Zur Wiederentdeckung von Calamagrostis stricta (Timm)
Koeler in Bayern

Von B. Quinger, Herrsching

1. Einleitung

Einschließlich der vier neuentdeckten bayerischen Fundorte wurden in Süddeutschland meines Wissens bisher nur 12 Vorkommen des Moor-Reitgrases publiziert oder durch Herbarmaterial belegt. Es ist anzunehmen, daß die geringe Zahl an Nachweisen (auch im Vergleich zu anderen Glazialreliktspflanzen auf Moorstandorten wie Carex beleonastes, Salix myrtilloides, Betula humilis, Betula nana, Pedicularis szeptum-carolinum oder dem mittlerweile fast verschwundenen Moor-Steinbrech) neben der wohl tatsächlichen Seltenheit von Calamagrostis stricta mit der verblüffenden Unscheinbarkeit dieses Grases zusammenhängt. Trotz seiner Größe kann es sehr leicht überschauen werden. So wurde das Schlußfelder Moos schon von so versierten Floristen wie Paul & Lütz (1941) und Pölt (1954) vegetationskundlich untersucht; das recht ausgedehnte Calamagrostis stricta-Vorkommen blieb jedoch unentdeckt.

Im folgenden Text wird daher auf habituelle Eigentümlichkeiten von Calamagrostis stricta hingewiesen, deren Beobachtung es den interessierten Floristen erleichtern dürfte, auf eventuell vorhandene, weitere Vorkommen des Moor-Reitgrases aufmerksam zu werden. Eine morphologische Beschreibung zur exakten Diagnose ist beigefügt. Es folgt ein Abschnitt zur Chorologie von Calamagrostis stricta, wobei die Verbreitung in Süddeutschland ausführlich dargestellt wird. Ein weiterer Abschnitt behandelt die standörtlichen Ansprüche und das soziologische Verhalten des Moor-Reitgrases an den neuentdeckten bayerischen Wuchsornen; außerdem werden Vergleiche mit außerbayerischen Vorkommen gezogen und die Ursachen für die Seltenheit der Art diskutiert. Abschließend folgen Vorschläge zu Schutzmaßnahmen, um das Moor-Reitgras langfristig in Bayern zu erhalten.

Für die Überlassung dieser Publikation danke ich herzlich Herrn Dr. Brauhöfer, dem Wiederentdecker von Calamagrostis stricta in Bayern. Für die Bestimmung von Plagiobeticum denticulatum bin ich Herrn Dr. Philippi von den Landessammlungen für Naturkunde in Karlsruhe verbunden. In meinen Be- mühungen waren mir außerdem die Herren Dr. Seybold vom Staatlichen Museum für Naturkunde in Stuttgart, Dr. Conert vom Forschungsinstitut Senckenberg in Frankfurt und Dr. Lippert von der Botanischen Staatssammlung München behilflich. Eine gezielte Nachsuche des Moor-Reitgrases im Mindelser-
2. Artbeschreibung von Calamagrostis stricta

2.1 Habituelle Unterschiede von Calamagrostis stricta und C. canescens.

2.2 Morphologische Beschreibung von *Calamagrostis stricta*.

Lockere bis mäßig dichte Horste bildend mit langen, dünnen, kriechenden Rhizomen. Stengel bis über 1 Meter hoch, aufrecht, ziemlich dünn, mit 2–3 Knoten, dicht unterhalb der Rispe glatt oder etwas rauh.

Blätter 10–60 cm lang, 1,5–5 mm breit (die Angabe von 2–3 mm in Rothmaler 1982 und Oberdorfer 1983 ist nach meinen Beobachtungen unzutreffend!), meistens (etwas) eingerollt, seltener flach, dunkelgrau-grün, oberseits ziemlich rauh, kurz behaart, dichtnervig, unterseits glatt, an den Rändern rauh. Ligula 1–4 mm lang, stumpf.

Rispen (5–10)10–15(–20) cm lang, 1–2(–3) cm breit, aufrecht, schmal-zylindrisch, dicht zusammengezogen, nur zu Beginn der Blütezeit ein wenig ausgebreitet. Rispenäste in sehr spitzen Winkeln von der Hauptachse abzweigend, wie diese durch nach vorne gerichtete Zähnchen (Binokular!) rückwärts rauh.

Ährchen einblütig, 3(–4,5) mm lang, eiförmig-lanzettlich bis lanzettlich, graubraun, graugelblichbraun oder purpurbraun, vor allem an der Hauptschenspitze und an den Seitenastspitzen der Rispe in dichten Büscheln sich gegenseitig teilweise überdeckend.

Hüllspelzen 3(–4) mm lang, länglich-eiförmig, kurz zugespitzt, an den Kielen mit vorwärts gerichteten Zähnchen, rauh.

Deckspelze: etwa 1/4 bis 1/5× so lang wie die Hüllspelzen, mit mehreren kleinen Zähnchen an der Spitze, mit einer geraden Granne, die auf der Deckspelzerückseite etwas unterhalb oder ± in der Mitte der Deckspelze entspringt und diese nicht oder nur wenig, die Hüllspelzen niemals überragt.

Haarkranz am Grunde der Deckspelze 1/2 bis 1/4× so lang wie die Deckspelze.

Vorspelze etwa 1/5× so lang wie die Deckspelze, 2nervig.

Antheren 2–2,5 mm lang.
3. Chorologie

3.1 Allgemeine Verbreitung

Calamagrostis stricta ist circumpolar in Eurasien und in Nordamerika verbreitet; das Areal reicht von der montanen Stufe der submeridionalen Zone im Süden bis zur arktischen Zone im Norden.

Seine südlichsten Wuchsorte besitzt *Calamagrostis stricta* nach Hultén & Fries auf der Insel Hondo und in den Rocky Mountains bei 38° n. Br., in Transkaukasien bei 40° nördlicher Breite.

3.2 Verbreitung im südlichen Mitteleuropa mit besonderer Berücksichtigung Süddeutschlands.

Mit Ausnahme der unnatürlichen und sporadischen Ansiedlung in Darmstadt sind nachstehenden sämtlichen mir bekannten Fundorte von *Calamagrostis stricta* in Süddeutschland zusammengefasst. Zu jedem Fundort werden die von mir ausgewerteten Quellen zitiert.

3.2.1 Fundorte in Bayern

7833/3: NSG Wildmoos nordöstlich von Etterschlag.
Höhenlage bei ca. 572 Meter ü. NN. Fundort entdeckt und belegt von B. Quinger am 15.7.1986 (Hb. M).

7833/3: NSG Göbelmoos westlich von Gilching.
Höhenlage bei ca. 562 Meter ü. NN. Entdeckt und belegt von B. Quinger am 18.7.1986 (Hb. M).

7833/4: Teggermoos nordwestlich von Gilching.

7933/1: NSG Schlufelder Moos nordöstlich von Steinebach a. Wörthsee.
Höhenlage bei ca. 574 Meter ü. NN. Entdeckt und belegt von B. Quinger am 17.7.1986 (Hb. M). Der größte und „ansehnlichste“ der vier neu entdeckten bayerischen Bestände des Moor-Reitgrases! Die Wuchsfläche von Calamagrostis stricta überlappt sich teilweise mit einem Vorkommen der sehr seltenen Carex belegonates!

3.2.2 Fundorte in Baden-Württemberg

7527/1 (?): Langenauer Ried (Genaue Quadrant unbekannt).

7923/2: Federseegebiet.

8025/3: Wurzacher Ried.
Ein Beleg ex Herbar A. Mayer ohne Angabe des Finders liegt am Stuttgarter Herbar (Hb. STU) vor! Das Etikett enthält die Angabe „Wurzacher Ried, im August 1860". Später wurde Calamagrostis stricta nie wieder im Wurzacher Ried festgestellt.

Bei dem Belegstück handelt es sich zweifelsfrei um Calamagrostis stricta; ob es tatsächlich aus dem Wurzacher Ried stammt, wie auf dem Etikett angegeben, entzieht sich meiner Kenntnis! In den württembergischen Floren von Martens & Kemmler (1865/1882), Kirchner & Eichler (1900/1913) und K. & F. Bertsch (1933/1948) wird das Wurzacher Ried als Fundort von Calamagrostis stricta nicht angegeben! Dieses Gebiet kann wohl nur mit Vorbehalt zu den (ehemaligen) Wuchsorten des Moor-Reitgrases gerechnet werden.

8118/3: Binninger Ried.
Der Fundort wird von Jack (1900) genannt und in der Flora von Klein & Seubert (1905) übernommen.
Verbreitung von Calamagrostis stricta (Timm) Koehl. in Bayern

Herbarbelege und Nachweise aus dem 20. Jahrhundert fehlen! Das Binninger Ried wurde bereits um die Jahrhundertwende entwässert (vgl. Bärtsch 1925), das Vorkommen des Moor-Reitgrases dabei offenbar zerstört!

8219/4: Riedwiesen bei Radolfzell gegen Überlingen a. R.

Verbreitung von Calamagrostis stricta (Timm) Koehl. in Baden-Württemberg

8220/1: Mindelseeried:

Für das Mindelseegebiet muß Calamagrostis stricta in Zukunft als verschollen gewertet werden.

3.2.3 Fundort in Rheinland-Pfalz

5412/2: Heidenwehr bei Steinen.

Publiziert wurde das Vorkommen von LUDWIG selbst (1953). Neuerdings ist Calamagrostis stricta am Heidenwehr in seinem Fortbestand stark gefährdet (DIEKJOST 1986).

4. Zur Vergesellschaftung und zu den standörtlichen Ansprüchen von Calamagrostis stricta

4.1 Zur Charakteristik der Calamagrostis stricta-Bestände im Schluifelder Moos, Görlermoos und Wildmoos

Sehr nasse, ständig unter Wasser stehende Seggenrieder werden gemieden. An seinen bayerischen Wuchsorsarten erscheint Calamagrostis stricta in Steif-Seggenriedern (Tab. 1; Lfd. Nr. 1–6), in denen die Bodenwasserstände bisweilen bis zur Bodenoberfläche oder etwas darunter absinken. In diesen Steif-Seggenriedern können bereits Moosarten gedeihen, die auf gelegentliche Belüftung angewiesen sind wie z. B. Calliergonella cuspidata, Climacium dendroides oder Aulacomnium palustre. Mit Aulacomnium palustre, das in den nässten Calamagrosti-
stis stricta – Aufnahmeflächen auf exponierte Plätze wie Bultfüße oder Bultränder beschränkt ist, erscheinen einzelne Torfmoospolster, im Untersuchungsgebiet meist aus *Sphagnum contortum*. Gehölze fehlen (noch) in Steifseggenriedern mit *Calamagrostis stricta* oder sind höchstens sehr vereinzelt eingestreut (z. B. *Salix aurita* oder *S. repens*) und bilden Kümmerformen aus.

Stärker als in den Steif-Seggenriedern kommt das Moor-Reitgras auf Schwingdecken mit einer ± geschlossenen Mooschicht zur Geltung, in der meist *Analamum palustre* oder minerotrophene Torfmoos-Arten wie *Sphagnum contortum*, *S. teres*, seltener auch *S. fallax* oder *S. subsecundum* vorherrschen (Tab.1; Lfd. Nr. 7 – 11). Die Bodenwasserstände liegen in allgemeinen unter Flur. Die Wasserstandschwankungen werden jedoch von den Schwingdecken passiv mitvölkert, so daß offenbar nur die Mooschicht durchlüftet wird. Auf eine kontinuierliche Wassersättigung der Wurzelräume unterhalb der Mooschicht deutet die Gehölzarmut der Schwingdecken hin, die ähnlich ausgeprägt ist wie in Steif-Seggenriedern mit *Calamagrostis-stis-Vorkommen*. In der Krautschicht dominiert meist *Carex lasiocarpa*, bisweilen auch die Steif-Segge, die fast immer noch ± reichlich vertreten ist. Die Großseggenbestände (inkl. *C. lasiocarpa*) der Schwingdecken sind meist lückig und schließen bei weitem nicht so dicht wie im moosarmen, „typisch“ entwickelten Magnocaricion, so daß sich das Moor-Reitgras stärker am Bestandesaufbau dieser Schicht beteiligen kann. Durch hohe Stetigkeit und oft auch hohe Dichtungswerte fallen *Potentilla palustris, Lysimachia thyrsiflora* und *Equisetum fluviatile* auf. Darüber hinaus sind in den Aufnahmeflächen häufig die für Schwingrasen charakteristischen Kleinseggen *Carex diandra, C. limosa* und im Schlufter Felder Moos sogar *C. heleonastes* vertreten!

Im Schlufterfeld Moos sind die mutmaßlich am geringsten mit Nährstoffen versorgten Pflanzenbestände zu beobachten, in denen das Moor-Reitgras an seinen bayerischen Wuchsorten gedeiht. Sie zeichnen sich bereits durch eine Mooschicht aus, in der ombrotrophene Torfmoos-Arten wie *Sphagnum magellanicum* oder *S. rubellum* vorherrschen (Tab.1; Lfd. Nr. 14 – 16). In der Kraut- und in der Mooschicht (z. B. *Calliergon stramineum*) sind noch zahlreiche, minerotrophene Arten der Klasse Schuchzerio-Caricetaea fuscae enthalten, so daß derartige Pflanzenbestände noch dem oligotrophenten Flügel des Verbandes Caricion lasiocarpae und nicht den Sphagnion magellanicis-Gesellschaften zuzurechnen sind.

Mit seinen Wurzeln und seinen Rhizomen kann sich das Moor-Reitgras in solchen Pflanzenbeständen tiefer legende, nährstoffreichere Bodenschichten erschließen als die von *Sphagnum magellanicum* und *S. rubellum* beherrschte Mooschicht. An den Aufnahmestellen (Tab.1; Lfd. Nr. 14 – 16) sind die Übergangsmoororte bereits in etwa 0,5 Meter Tiefe von Lebermudden unterschichtet (vgl. moortechische Aufnahme von *REINH*, 1984), die den Wurzelschicht des Moor-Reitgrases und der Großseggen sicher noch beeinflussen.

Nach diesem Ereignis müssen sich gravierende Vegetationsänderungen und -verschiebungen im südlichen Schlufterfelder Moos ereignet haben. Es ist naheliegend anzunehmen, daß ehemalige Niedermoorflächen mit *Calamagrostis stricta* inzwischen einer Vermoosung mit *Sphagnum magellanicum* und *Sphagnum rubellum* anheimgefallen sind und Übergangsmoor-Charakter angenommen haben. Die *Calamagrostis stricta-Vorkommen* in Übergangsmoor-Kom
<table>
<thead>
<tr>
<th>Artenzahl Gefäßpflanzen</th>
<th>11</th>
<th>12</th>
<th>10</th>
<th>7</th>
<th>8</th>
<th>10</th>
<th>8</th>
<th>10</th>
<th>13</th>
<th>11</th>
<th>15</th>
<th>8</th>
<th>8</th>
<th>11</th>
<th>12</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artenzahl Moose</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Calamagrostis stricta

2b 1 2a 2a 2b 1 2b 3 2b 5 2a 2b 2a 26 2b

Caricien lasiocarpaceae-Arten

- *Carex lasiocarpa*
- *Carex heatheri*
- *Carex diandra*

Weitere Arten der Kl. Scheuchzerio-Caricetea fuscæ

- *Poa pratensis* var. *albina*
- *Agrostis canina*
- *Carex pellita*
- *Eryngium angustifolium*
- *Carex echinata*
- *Mangnepath trifolia*
- *M. Callirhopus straminus*
- *M. Sphagnum cespitum*
- *M. Sphagnum fallax*
- *M. Sphagnum teres*
- *M. Sphagnum fontinalis s.l.*

Mangnepathion-Arten

- *Carex alpina*
- *Carex genuina*
- *Carex prostrata*
- *Carex plicata*
- *Salix purpurea*
- *Salix aurita*

Arten weiterer ssoz. Amplitude mit haupts. Verbreitung in Phragmites-, Alnetea- und Scheuchzerio-Caricetea fuscæ - Gesellschaften

- *Salix purpurea*
- *Carex alpina*
- *Carex genuina*
- *Carex prostrata*
- *Carex plicata*
- *Salix aurita*

Arten der Kl. Glyceraco-Sphagnetea

- *Vaccinium oxycoccos*
- *M. Sphagnum rubellum*
- *M. Sphagnum magellanicum*
- *M. Polytrichum strictum*
- *M. Sphagnum angustifolium*

Sengetige

- *Lysimachia vulgaris*
- *Galium uliginosum*
- *Equisetum palustre*
- *Lythrum salicaria*
- *Calothrix pelialis*
- *M. Alnus salicifolia*
- *M. Calliergon aquilegia*
- *M. Clamnicum dendroides*
- *M. Flaggemum elatum*
plexen des Schluifelder Mooses können daher mit gutem Grund als Sukzessionsrelikt gedacht werden. Umgekehrt ist in diesem Gebiet möglicherweise die Ansiedlung des Moor-Reitgrases auf Flächen erfolgt, die vor der Seesabsondung zu naß für diese Grasart waren.

4.2 Vergleich mit Vegetationserhebungen aus dem Federseegebiet

4.3 Zum soziologischen Anschluß von Calamagrostis stricta im Alpenvorland

Faßt man die Beobachtungen von den bayerischen Wuchsorten und aus dem Federseeried zusammen, so stellt sich die soziologische Amplitude des Moor-Reitgrases am Südwestrand seines eurasischen Areals wie folgt dar:

4.4 Vergleich mit Calamagrostis stricta-Beständen des nordöstlichen Mitteleuropas

Die Calamagrostis stricta-Bestände des nordöstlichen Mitteleuropas liegen bereits innerhalb des eurasischen Hauptareals dieser Grasart. Die für das Alpenvorland geltende soziologische

Meiner Ansicht nach ist es nicht gerechtfertigt, den Moor-Reitgras-Beständen der bayerischen Moore einen eigenen synsystematischen Status zu verleihen. Die Pflanzenvegetation der in Frage kommenden Verbände Magnocaricion und Caricion laciocarpae stellen Dominanzgesellschaften mit einer weildurchgehenden Cyperaceenart (im Falle von Calamagrostis stricta eine Gramineenart) dar. Die Moor-Reitgras-Bestände können in den Mooren des Alpenvorlands zwar Flächen von über 1000 m² umfassen; Calamagrostis stricta bleibt jedoch auf solchen Flächen in seiner Massenproduktion weit hinter einer oder sogar hinter mehreren Seggen-Arten zurück.

Innerhalb dieser Calamagrostis stricta-Bestände kann man allenfalls kleine „Dominanzinseln“ des Moor-Reitgrases von maximal 2 m² Größe registrieren (Tab. 1; Lfd. Nr. 10, 11, 13), deren Flächenanteil am Gesamtbestand niemals 5 % überschreitet. Das Auftreten solcher „Dominanzfelder“ ist nicht erkennbar mit bestimmten standörtlichen Verhältnissen verknüpft oder an ein faßbares Sukzessionsstadium gebunden. Sie scheinen eher zufällig zustande gekommen zu sein und sind außerdem mit einer Maximaldeckung des Moor-Reitgrases von etwa 50% nur ± undeutlich ausgeprägt.

5. Erklärungsversuche zur Seltenheit von Calamagrostis stricta im Alpenvorland

Aus der standörtlichen und soziologischen Bannbreite, die Calamagrostis stricta im Alpenvorland abdeckt, läßt sich die Seltenheit dieses Grases nicht einleuchtend begründen, die zweifels auch dann noch angetroffen, falls einige weitere Vorkommen entdeckt werden sollten. Der potentiell besiedelbare (Übergangs)Bereich von ± mäßig trockenen, mesotrophen Großseggenriedern zu Caricion laciocarpae-Schwingdecken ist im Alpenvorland keineswegs eine seltene Erscheinung. Zumindest im westlichen und im mittleren Jungmoränengebiet ist dieser für Calamagrostis stricta geeignete Habitat wohl in der Mehrzahl der Verlandungsquellen vorhanden, die sich in den Seebecken und in den Toteislochge bieten gebildet haben.

Als Ursache für die Seltenheit von Calamagrostis stricta kann man ein eingeschränktes Propagationsvermögen im Vergleich zu Arten annehmen, die in dem geeigneten Habitat mit hoher Stetigkeit auftreten (z. B. Lysimachia thyrsiflora). Zudem scheint das Migrationsvermögen des Moor-Reitgrases an seiner südlichen Arealgrenze sehr gering entwickelt zu sein.

Zumindest im Schlufeldener Moos und im Göbelmoos sind die Moor-Reitgras-Populationen deutlich in langgezogene Ökotone eingeführt; im Schlufelder Moos kann man sogar die bemer-
kenswerte, im Alpenvorland vielleicht einmalige Überlagerung mit einem Carex beleonastes-Bestand beobachten!

Trotz der zweifellos vorhandenen Parallelen zeigt das Moor-Reitgras im Alpenvorland gegenüber Glazialrelikten wie Saxifraga hirculus, Juncus stygius und auch Carex beleonastes jedoch ein modifiziertes Verhalten. Mir scheint Calamagrostis stricta bei weitem nicht so konkurrenzschwach zu sein. Die größere Konkurrenzkraft schlägt sich in der Ausbildung von Populationen nieder, die wesentlich individuenreicher (Federseeried, Schlufelder Moos) sind, bedeutend größere Flächen einnehmen, und bei standörtlichen Eingriffen nicht sofort von der Konkurrenz ausgeschaltet werden können, wie es im Alpenvorland offenbar vor allem bei Saxifraga hirculus und Juncus stygius der Fall ist, die wohl deshalb inzwischen fast ausgestorben sind?

6. Gefährdung der bayerischen Populationen von Calamagrostis stricta und Vorschläge zu Schutzmaßnahmen

2. Im NSG Görtelmoos befindet sich die Calamagrostis stricta-Population am Nordrand des Gebietes. Die Schwingdecken mit dem Moor-Reitgras sind nur 20–50 Meter von Maisäckern entfernt, die unmittelbar an das NSG angrenzen. Eine ausreichend breite Pufferzone, die die Calamagrostis stricta-Bestände vor Nährstoffeinschwemmungen abschirmen würde, ist daher leider nicht vorhanden.

Von einer durch Nährstoffeinschwemmungen verursachten Eutrophierung sind außer Calamagrostis stricta unter anderem noch Carex buxbaumii und Thalictrum simplex subsp. galioides (im Isar-Loisach-Vorland extrem selten) bedroht, die in einem noch geringeren Abstand zur nördlichen NSG-Grenze gedeihen. Das Verschwinden dieser drei floristischen Besonderheiten und somit eine empfindliche Entwertung des Naturschutzgebietes wird ohne Ausweisung einer großzügigen Pufferzone an der gesamten Nordseite des Gebietes in Zukunft kaum ausbleiben! Empfehlenswert ist darüber hinaus eine Vergrößerung des NSG’s an der Nordostseite.

3. Im NSG Wildmoos grenzt das Moor-Reitgras-Vorkommen unmittelbar an eine Forststraße an, die erst vor wenigen Jahren quer durch den Osteil des Wildmooses etwa 0,5–1 Meter oberhalb der Mooroberfläche angelegt wurde. Infolge einer allmählichen Eutrophierung der benachbarten Pflanzenbestände ist künftig zumindest eine (weitere) Reduktion der Ausdehnung (z. Z. etwa 1000 m²) der Calamagrostis stricta-Population zu erwarten.

20

Beim Bau der neuen, autobahnartigen Trasse der B 12, die am Nordrand des Schlußfeldmoos vorbeiführen wird, ist unbedingt auf bautechnische Vorsorgemaßnahmen zu achten, die verhindern, daß dem Moorgebiet künftig Autobahnabwasser zufließen. Andernfalls muß befürchtet werden, daß dem Schlußfeldmoos ein ähnliches Schicksal wiederfahren wird, wie es gegenwärtig das an der BAB A 95 gelegene NSG Mörlbachfilz östlich des Starnberger Sees erleidet. Infolge der eingetretenen Eutrophierung weiter Teile dieses Filzes sind bereits empfindliche Arten, wie z. B. *Carex beleanastes* verschwunden (A. Ringler 1986, mld.).

Literatur