Entwicklung und Stand der Rubus-Forschung in Europa

von H. E. Weber, Bramsche

Zusammenfassung

Abstract

The European brambles (Rubus L. subgen. Rubus) are almost all facultative apomicts. New biotypes are continuously yielded by occasional hybridisation and segregation. Some of them become stabilised by apomixis. There are millions of singular biotypes in Europe and many thousands of local apomicts occurring merely in restricted areas of about 0,05-20 km diameter. Former botanists treated at first all different biotypes as far as possible as species of their own, later preferably as infraspecific taxa or as fancy hybrids. Henri SUDRE (1908-1913) established an artificial system based on heterophyletic resemblances, and this misleading system was used in many parts of Europe until the 1970s and partly almost until up to the present. Regarding apomicts, in modern botany (Rubus taxonomy) only brambles with a regional or wider distribution area are described and named as species. Singular biotypes are not regarded taxa of their own. The same applies to local biotypes, because otherwise, facing an amount of many thousands of similar to extremely similar local taxa, botany would loose practicability and would be led ad absurdum. Up till now about 700 bramble species are known in Europe, but there seem to be many more not discovered yet. The Rubus flora is taxonomically for the greatest part cleared up and the distribution of the species is well known by detailed mapping in A, CZ, D, DK, E, GB, IRL, L, N, NL, P, PL, S), also quite well in B and partly also in CH, but by means of modern botany very insufficiently to almost not explored especially in F, SK, and the Balkan states.

1. Biologie der europäischen Brombeeren als Ursache taxonomischer Probleme

Wenn eine solche Hybride oder einer ihrer Abkömmlinge gut an die Umwelt adaptiert ist und wiederum zur Apomixis zurückkehrt, dann kann deren konstante Nachkommenschaft allmählich ein mehr oder minder großes Verbreitungsgebiet aufbauen. Der Formenreichtum der europäischen Brombeerflora erklärt sich daher durch ein Zusammenspiel sexueller und apomiktischer Vermehrung: Durch gelegentliche Sexualität entstehen neue hybridogene Biotypen, die ihre Merkmalskombinationen durch nachfolgende Apomixis an ihre Nachkommenschaft weitergeben.

Es gibt Landschaften, in denen fast nur solche stabilisierten Apomikten die Brombeerflora bilden, so etwa in Nordwest-Niederösterreich, wo man unter Tausenden von Brombeerrastern, die alle zu bekannten Arten gehören, nur ausnahmsweise einmal auf einen singulären Biotypus stößt. Dagegen gibt es andere Gebiete, wie etwa die Vogesen, den Schwarzwald und das Alpenvorland, in denen die stabilisierten Brombeerarten von einer Fülle von Spontanhybriden und deren Abkömmlingen überlagert werden. Vor allem die drüsenreichen Vertreter der Serien Pallidi W. C. R. WATSON, Hystrix Focke und Glandulosi (Wimmer & Grab.) Focke zeigen vielfach nur eine geringe Apomixis und erzeugen untrennbar Formenschwärme singulärer Biotypen.

2. Ehemalige Konzepte zur Taxonomie der Brombeeren

178
<table>
<thead>
<tr>
<th>Pflanze-Nr.</th>
<th>Schüssling</th>
<th>Blatt</th>
<th>Blütenstand</th>
<th>Pflanze einzudenken in Serie</th>
<th>Pflanze sehr ähnlich wie</th>
<th>Rubus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 a (b)</td>
<td>C D E F G h</td>
<td>I J k l n O p (q)</td>
<td>Pallidi</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2 (a) b (c)</td>
<td>D E F G h</td>
<td>(i) J k l M n O</td>
<td>Pallidi</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3 A (l) c</td>
<td>D E F G h</td>
<td>(i) J k l n (o) p</td>
<td>Pallidi bregoliensis</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4 a b c D (e)</td>
<td>f G h</td>
<td>i J k l M (n) o (q)</td>
<td>Pallidi</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5 a B (c)</td>
<td>D E F G h</td>
<td>(l) J k l (m) n (o) p</td>
<td>Radula salisburyensis</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6 a B B (c)</td>
<td>D E F G h</td>
<td>(l) J k l (m) n (o) p</td>
<td>Radula</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7 A B (c)</td>
<td>D E F G h</td>
<td>I J k l m N O P Q</td>
<td>Radula</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8 A B (c)</td>
<td>D E F G h</td>
<td>(l) J k l (m) n O (q)</td>
<td>Radula</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9 a B B (c)</td>
<td>D E F G h</td>
<td>I J k l (m) N O P Q</td>
<td>Radula radula</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10 (a) b c</td>
<td>D (e) (l) G h</td>
<td>(i) J k l (n) o P q</td>
<td>Radula</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>11 a b c D E F (g)</td>
<td>f G h</td>
<td>(l) J k l (m) n o P q</td>
<td>Glandullosi</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>12 a b (b) c D E F G h</td>
<td>(l) J k l K L n o P Q</td>
<td>Glandullosi hintus agg.</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abb. 1: Unterschiedliche Merkmale bei 12 Pflanzen der F1-Generation eines nicht durch Apomixis stabilisierten Brombeerstammes. (1) Schwarze Felder mit Großbuchstaben = Merkmal vorhanden oder stark ausgeprägt – (2) Helleg Graue Felder mit Kleinbuchstaben = Merkmal fehlend oder gegenteilig zu 1. – (3) Dunkelgraue Felder mit Kleinbuchstaben in Klammern = Mittelstellung zwischen 1 und 2. – Weiße Felder mit Punkten = Merkmal nicht ausreichend am Herbarbeleg erkennbar (Kronblätter- und Griffelfarbe, postflorale Länge der Kelchzipfel). – Im einzelnen bedeuten: A→a = scharfkantig-flachseitig bis rinnig→ ründlich stumpfkantig. – B→b = gleich groß→ sehr ungleich groß. – C→c = breit→ dünn. – D→d = viele→ keiner. – E→e = (fast) alle 5-zählig→ (fast) alle 3-zählig. – F→f = unterseits weißgraumilzig→ filzlos grün. – G→g = rundlich→ verlängert. – H→h = grob, ungleich→ fein, (fast) gleichartig. – I→i = breit→ schmal. – J→j = zahlreich→ fehlend. – K→k = schwarzviolet→ rötlich bis farblos. – L→l = Stielränder des Blütenstiels bis 1-1,5 mm→ bis 0,5 mm. – M→m = stark verlängert→ nicht verlängert. – N→n = rosa→ weiß. – O→o = die Griffel überragend→ die Griffel nicht überragend. – P→p = (zumindest Basis) rosa→ weißlich oder grünlich. – Q→q = dichthaarig→ kahl. – Nach Daten bei Maurer & Weber (2000).

2.1. Beschreibung jedes abweichenden Brombeerbusches als eigenes Taxon

Dieses war die zunächst vorherrschende Methode. Nach damaliger Auffassung waren alle Pflanzen und somit auch die Brombeerarten von Gott am dritten Tag der Genesis erschaffen und andere Vorstellungen – etwa die einer nachträglichen oder gar noch andauernden Weiterentwicklung – standen im Gegensatz zur Bibel. Daher hielt selbst noch 1879 der Aachener Botaniker Carl Foerster die Annahme, die Brombeerarten wären noch in Entwicklung begriffen, grundsätzlich für nicht sinnvoll und vertrat die Ansicht, die Erforschung der unübersehbaren Fülle unterschiedlicher Brombeerformen erfordere vielmehr „im Gegensatz eine ungeteilte Kraft und eine durch nichts zu ermüdende Ausdauer... bis der Götterfunk das noch schwebende Dunkel in befriedigender Weise erleuchtet.“

179
Dabei geriet die Batologie sogar in die Nähe des damaligen Kulturkampfes, denn „bei der nicht bestreitbaren Polymorphie der Gattung Rubus handelt es sich hauptsächlich und in erster Linie darum, ... ob wir dieses Feld als einen fetten Bissen dem Darwinismus einräumen und ausliefern müssen“ (FÖRSTER 1879). Die gegenteilige Auffassung vertrat der bekannte Biologe und weltweit führende Batologe W. O. FOCKE (z. B. 1877), der den Gedanken Darwins begeistert folgte, was übrigens vorübergehend zu einem Zerwürfnis mit seinem Freund Ernst HÄCKEL führte (WEILING 1974), bevor dieser, durch FOCKE überzeugt, zum bekanntesten Verfechter der Darwinischen Evolutionslehre auf dem europäischen Kontinent wurde.

2.2. Bevorzugung infraspezifischer Taxa

Eine zweite Methode bestand darin, die Artenzahl durch die Aufstellung infraspezifischer Taxa möglichst niedrig zu halten. Hierbei wurden einige wenige – meistens die bereits von Weihe aufgestellten – Arten zu Hauptarten erklärt und alle weiteren Brombeeren mehr oder minder willkürlich als deren Varietäten oder Formen beschrieben. Auch bereits beschriebene Arten wurden zu infraspezifischen Taxa herabgestuft. So betrachteten nicht wenige Autoren (wie etwa SYNE 1864) überhaupt alle Brombeeren lediglich als Subspecies oder Varietäten des Rubus fruticosus L. Nach diesem Konzept wurde beispielsweise der charakteristische Rubus vestitus Weihe zu Rubus fruticosus L. ssp. leucostachys (Schleicher ex Sm.) SYNE var. vestitus (Weihe) SYNE.

2.3. Deutung der Brombeerarten durch Hybridenformeln

Die Impotenz dieses Produktes lässt vermuten, dass die in der Formel stehenden semivestitus unter ihren Ahnen keinen Rubus aestivalis hatten. Manches für sich hat aber auch die Deutung des in Rede stehenden Bastardes als R. Bellardii × vestitus-tomentosoaestivalis qu. (hy. suberectus).

Der Vorteil der Hybrid-Methode lag vor allem für denjenigen auf der Hand, der als Brombeerkenner galt und dem man daher Beliehen zur Bestimmung zusandte. Man brauchte nur relativ wenige Arten zu kennen und konnte mit entsprechender Phantasie die Exemplare mit Hybridenformeln beschriften. Die genannten und fast alle übrigen Autoren haben jedoch niemals den Versuch gemacht, ihre Formeln experimentell zu überprüfen.
2.4. Einordnung jedes unbekannten Brombeerstrauches als infraspezifisches Taxon innerhalb eines künstlichen Systems

Aufgrund dieses Konzepts ordnete Sudre dem ungarischen Rubus hirtus Waldst. & Kit. etwa 180 infraspezifische Taxa aus den verschiedensten Gebieten Europas zu, wobei es sich hierbei fast durchwegs um individuelle oder lokale Biotypen handelt.

Sudres Monographie erweckt den Eindruck, als seien die europäischen Brombeeren darin ein für alle Mal abschließend behandelt; und daher entwickelte sich nach Sudre in den meisten Ländern Europas eine Art von scholastischer Phase, in der man sich allein an den „Rubi Europae“ orientierte und hiermit Scheinresultate produzierte. Der weitaus größte Teil der Angaben, die auf Sudre basieren, haben sich als falsch erwiesen und sind aber anderseits Jahrzehnte lang in fast alle bedeutenden Floras übernommen worden (z. B. auch in die Flora Europaea).

2.5. Spezielle Nomenclatur für Apomikten

2.6. Differenzierte Bewertung der Biotypen nach biologischen Merkmalen

3. Heutiges Konzept der Taxonomie der Brombeeren

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Areal- Durchmesser</th>
<th>Vermutete Anzahl in Mitteleuropa</th>
<th>Beschreibung als eigenes Taxon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singuläre Biotypen</td>
<td>ca 2–10 (~100) m</td>
<td>mehrere Millionen</td>
<td>nein</td>
</tr>
<tr>
<td>Lokalsippen</td>
<td><20 km</td>
<td>Zehntausende</td>
<td>nein</td>
</tr>
<tr>
<td>Lokalsippen mit schwacher bis starker Tendenz zu regionaler Verbreitung</td>
<td>Übergänge bis 50 km</td>
<td>2000–5000?</td>
<td>ausnahmsweise</td>
</tr>
<tr>
<td>Regionalsippen</td>
<td>50–250 km</td>
<td>ca. 170</td>
<td>ja</td>
</tr>
<tr>
<td>Regionalsippen mit schwacher bis starker Tendenz zu weiter Verbreitung</td>
<td>Übergänge bis 500 km</td>
<td>ca. 120</td>
<td>ja</td>
</tr>
<tr>
<td>Weit verbreitete Sippen</td>
<td>>500 km</td>
<td>ca. 120</td>
<td>ja</td>
</tr>
</tbody>
</table>

Tab. 1: Arealkategorien bei Brombeeren und geschätzte Zahl der jeweils dazu gehörenden Biotypen in Mitteleuropa.

Die pragmatische Beschränkung der taxonomischen Validierung auf Sippen mit einer Areal-Mindestgröße mag auf den ersten Blick nicht der „reinen wissenschaftlichen Lehre“ entsprechen; sie ist aber das einzige praktikable Verfahren, durch das überhaupt erst die erfolgreiche Beschäftigung mit Brombeeren möglich wurde. Vielleicht kann man es damit vergleichen, dass man topografische Karten nur im Maßstab beispielsweise bis zu 1:5000 oder 1:25.000 veröffentlicht und solche im größeren Maßstab nur als „Manuskriptkarten“ führt. Ein derartiges Verfahren ist üblich und gilt nicht als unwissenschaftlich. Durch eine kleinmaßstäbliche Behandlung apomiktischer Brombeeren mit interna-
tional gültig veröffentlichten Namen würde mit Zehntausenden von einander ähnlichen und ähnlichen Taxa ein nicht mehr zu bewältigendes Chaos entstehen, wie es in früheren Zeiten teilweise bereits erreicht war und dazu geführt hatte, dass sich fast niemand mehr mit Brombeerent beschäftigte und eine Verständigung über die Taxa zum Erliegen gekommen war.

Nur wenige der Klone überschreiten die Arealschwelle von 50 km Durchmesser, und gerade diese Sippen sind oft auch kennzeichnend für die Vegetation einer Region. Insgesamt reduziert sich bei diesem Verfahren die Zahl der allgemein zu beachtenden Taxa erheblich (Übersicht z. B. bei Weber 1999a), das heißt in Deutschland auf „nur“ etwa 370 Arten, über die inzwischen ein recht guter Überblick gewonnen werden konnte. Die Zahl der bislang beschriebenen und nachweislich regional oder weit verbreiteten Brombeerarten beträgt in Europa etwa 700. Mangels ausreichender Forschung entspricht sie aber weitesten noch nicht der tatsächlich vorhandenen Menge.

Zwischen den einzelnen Kategorien sind größere Bereiche als Übergänge belassen, um eine allzu starre Einteilung der Kategorien gewissermassen mit dem Metermaß zu vermeiden. Eine Sippe mit einem Arealdurchmesser von beispielsweise 300 km – also im Übergangsbereich zwischen regionaler (250-500 km) und weiter (>500 km) Verbreitung – kann als „Regionalsippe mit schwacher Tendenz zu weiterer Verbreitung“ eingestuft werden (Tab. 1).

4. Aktuelle Rubus-Forschung in Europa

Der Grad der batologischen Erforschung ist in Europa höchst unterschiedlich (Abb. 4). Dabei bildet Frankreich die graviertesten Lücke. Es gibt dort eine reichhaltige Brombeerflora, doch basieren die bisherigen Untersuchungen auf der irreführenden Grundlage von Sudre (1908-1913). Eine moderne Bearbeitung der Gattung Rubus in Frankreich und einigen anderen Ländern wie beispielsweise auf dem Balkan (Abb. 4) ist vorläufig nicht in Sicht.

Die Verbreitungskarten lassen charakteristische ornithochore Ausbreitungsstrategien der Brombeeren erkennen (Weber 1987) ebenso wie deutliche Beziehungen der einzelnen Arten zu den unterschied-

Literatur

Prof. Dr. Dr. Heinrich E. WEBER
Am Bühner Bach 12
D-49565 Bramsche

185